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Abstract: The design and performance of a time lens-based, single-shot, ultrafast waveform recording system with sub-

picosecond resolution and 200-ps record length is presented. The system evolved from recording rapidly changing 

waveforms at 104 Mframes/sec with limited dynamic range to a >20 dB dynamic range system capturing single events. 

Latest results demonstrate its integration with a new ultrafast optically-modulating x-ray sensor. 

 

I. INTRODUCTION 

 

Capturing arbitrary waveforms with < 1-ps detail and 

several hundreds of ps record length is a challenging 

problem, particularly when from a single event. The 

problem is compounded when the waveform originates 

from a space-constrained and/or hazardous environment, 

mandating remote recording away from the measurement. 

Two classes of this problem have been addressed using a 

time lens-based recoding system. In the first class, packets 

(or frames) arrive continuously at high frame rates and 

need to be recorded single-shot. Dynamic range (DR) and 

signal-to-noise ratio (SNR) requirements are low. In the 

second, only one high-value event occurs and the highest 

possible SNR and DR is desired. The system presented 

here was initially demonstrated at high repetition rate
1,2

 

and later modified for the high-DR application.  

Time lens signal manipulation is based on an analogy 

between paraxial diffraction and narrow-band dispersion.
3
 

These processes introduce a quadratic frequency domain 

phase, scaling as     for dispersion, where  is a 

distance and   is the group-velocity dispersion. 

A lens imparts a quadratic phase in either space or 

time. The imparted time lens phase (equivalent to a linear 

frequency chirp /d d  ) is characterized by the temporal 

focal distance 
f  or focal group delay dispersion (GDD), 

1( / )f f d d         , required for removal of the 

quadratic phase imparted by the time lens. In this work 

the phase is imparted through optical frequency mixing of 

the signal with a chirped pump pulse.
4
 

A temporal imaging system is created by cascading 

input GDD 
1 , a time lens, and output GDD 

2  in the 

proper balance to satisfy the imaging condition 

1 21/ 1/ 1/ f      . The output waveform is a replica of the 

input waveform, magnified in time by 
2 1/M     . At 

focus, the input GDD 
1 (1 1/ )f M      is approximately 

equal to the focal GDD for large time magnification. 

Every high-rate occurrence of the time lens produces a 

magnified output waveform which can be recorded with a 

conventional recorder, at a resolution improved by the 

time magnification.
1,2

 

Systems can also Fourier transform the input 

waveform. When
1 f   , the output spectrum has the same 

envelope profile as the input time profile.
4
 There is no 

need for output GDD; instead, a spectrometer maps the 

signal into space, enabling the waveform to be recorded 

on a high-DR camera. This produces a time-to-frequency 

followed by a frequency-to-space transformation. A 

single-event recording is produced by properly gating to 

obtain only one time lens exposure on the camera.  
 

II. SYSTEM DESCRIPTION 
 

Two recording systems are presented in Figs. 1 and 2 

utilizing the same time lens and nearly identical input 

GDD paths. Each input contains optical fiber dispersion, 

and a Mach-Zehnder gated EDFA. The time lens is 

implemented through sum-frequency of a chirped pump 

with the dispersed signal in a periodically polled lithium 

niobate (PPLN) waveguide nonlinear mixing crystal.
1,2 

The pump is generated from a 10 GHz optical comb 

source phase locked to the signal being recorded and 

pulsed picked down to a 50-104 MHz rate. The pulse train 

is compressed in a dispersion decreasing fiber to 240 fs, 

then dispersed and amplified to produce 200-pJ, 200-ps 

fwhm chirped pulses with 221.7 psf   .  

 
Fig. 1. High-rate system for time magnification.

1,2 

The original system
3
 in Fig. 1 has 2

1 22.2 ps  and 

Fiber Bragg Gratings that produce an output dispersion of 
2

2 941 ps   . The -42.6X time magnified output 

waveform was recorded with a 20-GHz photodiode and 

oscilloscope. The signal was gated before amplification to 

optimize signal power for the recorded frames. 

In Fig. 2, 
1 f   and the FBG has been replaced with 

a spectrometer to map the output into space. The single-
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event signal from the sensor was dispersed, amplified, 

then gated before time lens mixing, minimizing integrated 

ASE. Initial optical testing without the sensor utilized a 

0.5-m, 1200-groove/mm spectrometer and a PIXIS 

100BR camera readout (see Fig. 4). The final design uses 

a 1-m, 1800-grove/mm spectrometer, a 470-s duration 

MEMs based shutter, and a PIXIS 2048B camera to 

capture the output spectra (see Fig. 5). The sensor is a 

Fabry-Perot with a resonance that shifts due to the 

presence of x-ray generated (or optical) free carriers, 

acting as a fast modulator to an optical probe.
5
 Optically 

driven test results are present here. 

 
Fig. 2. Single-event system incorporating an x-ray-to-

optical sensor
5
, performing time-to-space mapping for 

high dynamic range recording. 
 

III. RESULTS AND DISCUSSION 
 
Earlier results with the system in Fig. 1 demonstrated 

the recording of pseudorandom < 1ps fwhm 3-pulse 

patterns at 104-Mframe/s.
3 

 That system is the foundation 

for the following results. The output FBGs were removed, 

the 0.5-m spectrometer added, and a 2.3% change to the 

input GDD was made to produce the system in Fig. 2 

(without the sensor). The resulting time-to-space 

conversion was 0.75 ps/pixel with a spectrometer-limited 

impulse width of 1.6 ps fwhm. Fig. 4 shows single shot 

results attenuating an input 860 fs pulse over 30 dB. The 

1% post pulse was verified with a cross-correlator. 

 
Fig. 4. Initial optical dynamic range testing of the system 

in Fig. 2, without the sensor. 

The spectrometer and camera were upgraded to 

produce a 0.3 ps/pixel time-to-space conversion. A fast 

sensor was added and tested with a 100-fs optical impulse 

that served as a surrogate to future x-ray excitation. 

Results shown in Fig. 5 have a 885fs rising edge 

(spectrometer limited), an exponential tail, and is 2.5 ps 

fwhm, consistent with independent scanning pump-probe 

measurements of the sensor. In any fiber coupled 

recording system the power must be kept low enough to 

avoid nonlinear distortions in propagation. In Fig. 5 the 

normalized “1” power is 5mW reflecting off the sensor. 

 
Fig. 5. Optical impulse testing of the combined sensor and 

recording system in Fig. 2.  
 

IV. CONCLUSIONS 
 

A time lens system has demonstrated single-shot 

measurements when operated in both a high rate readout 

and single-event, high-DR mode through minor changes 

to the input dispersion and modification of the final 

output. Integration with a fiber remoted sensor enables 

high-DR ultrafast x-ray waveform recording. Optical test 

results were discussed here. Details of the sensor and x-

ray driven results are to be discussed in another paper.
6
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